The aim of our research is to invent techniques that will enable us to elucidate the electronic structure of transition metal containing materials with partially filled d/f orbitals in the presence of strong non-adiabaticity and environmental fluctuations. Our work attempts to provide a molecular level understanding of phenomena that are of critical importance in heterogeneous catalysis, multiferroics for electronics, superconductivity and are even relevant in biology for bird navigation via magnetoreceptors and enzyme catalyzed redox reaction of small molecules.
keywords
Electronic structure theory, Metalloenzymes, Transition metal oxides, Quantum materials