Regime-Dependent Characteristics and Predictability of Cold-Season Precipitation Events in the St. Lawrence River Valley Journal Article uri icon

Overview

abstract

  • Abstract; The St. Lawrence River Valley experiences a variety of precipitation types (p-types) during the cold season, such as rain, freezing rain, ice pellets, and snow. These varied precipitation types exert considerable impacts on aviation, road transportation, power generation and distribution, and winter recreation and are shaped by diverse multiscale processes that interact with the region’s complex topography. This study utilizes ERA5 reanalysis data, surface cyclone climatology, and hourly station observations from Montréal, Québec, and Burlington, Vermont, during October–April 2000–18 to investigate the spectrum of synoptic-scale weather regimes that induce cold-season precipitation across the St. Lawrence River Valley. In particular, k-means clustering and self-organizing maps (SOMs) are used to classify cyclone tracks passing near the St. Lawrence River Valley, and their accompanying thermodynamic profiles, into a set of event types that include a U.S. East Coast track, a central U.S. track, and two Canadian clipper tracks. Composite analyses are subsequently performed to reveal the synoptic-scale environments and the characteristic p-types that most frequently accompany each event type. Global Ensemble Forecast System version 12 (GEFSv12) reforecasts are then used to examine the relative predictability of cyclone characteristics and the local thermodynamic profile associated with each event type at 0–5-day forecast lead times. The analysis suggests that forecasted cyclones near the St. Lawrence River Valley develop too quickly and are located left-of-track relative to the reanalysis on average, which has implications for forecasts of the local thermodynamic profile and p-type across the region when the temperature is near 0°C.; ; Significance Statement; Diverse precipitation types are observed when near-surface temperatures approach 0°C during the cold season, especially across the St. Lawrence River Valley in southern Québec. This study classifies cold-season precipitation events impacting the St. Lawrence River Valley based on the track of storm systems across the region and quantifies the average meteorological characteristics and predictability of each track. Our analysis reveals that forecasted low pressure systems develop too quickly and are left of their observed track 0–5 days prior to an event on average, which has implications for forecasted temperatures and the type of precipitation observed across the region. Our results can inform future operational forecasts of cold-season precipitation events by providing a storm-focused perspective on forecast errors during these impactful events.

publication date

  • October 1, 2024

has restriction

  • closed

Date in CU Experts

  • October 2, 2024 9:44 AM

Full Author List

  • Winters AC; Bassill NP; Gyakum JR; Minder JR

author count

  • 4

Other Profiles

International Standard Serial Number (ISSN)

  • 0882-8156

Electronic International Standard Serial Number (EISSN)

  • 1520-0434

Additional Document Info

start page

  • 1353

end page

  • 1375

volume

  • 39

issue

  • 10