Predicting September Arctic Sea Ice: A Multimodel Seasonal Skill Comparison Journal Article uri icon

Overview

abstract

  • Abstract; This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.

publication date

  • July 1, 2024

has restriction

  • hybrid

Date in CU Experts

  • July 8, 2024 9:43 AM

Full Author List

  • Bushuk M; Ali S; Bailey DA; Bao Q; Batté L; Bhatt US; Blanchard-Wrigglesworth E; Blockley E; Cawley G; Chi J

author count

  • 61

Other Profiles

International Standard Serial Number (ISSN)

  • 0003-0007

Electronic International Standard Serial Number (EISSN)

  • 1520-0477

Additional Document Info

start page

  • E1170

end page

  • E1203

volume

  • 105

issue

  • 7