We utilized NTP analogues containing modified bases to probe the mechanism of NTP selection by the primase activity of the herpes simplex virus 1 helicase-primase complex. Primase readily bound NTP analogues of varying base shape, hydrophobicity, and hydrogen-bonding capacity. Remarkably, primase strongly discriminated against incorporating virtually all of the analogues, even though this enzyme misincorporates natural NTPs at frequencies as high as 1 in 7. This included analogues with bases much more hydrophobic than a natural base (e.g., 4- and 7-trifluoromethylbenzimidazole), a base of similar hydrophobicity as a natural base but with the Watson-Crick hydrogen-bonding groups in unusual positions (7-beta-d-guanine), bases shaped almost identically to the natural bases (4-aminobenzimidazole and 4,6-difluorobenzimidazole), bases shaped very differently than a natural base (e.g., 5- and 6-trifluoromethylbenzimidazole), and bases capable of forming just one Watson-Crick hydrogen bond with the template base (purine and 4-aminobenzimidazole). The only analogues that primase readily polymerized into primers (ITP and 3-deaza-ATP) were those capable of forming Watson-Crick hydrogen bonds with the template base. Thus, herpes primase appears to require the formation of Watson-Crick hydrogen bonds in order to efficiently polymerize a NTP. In contrast to primase's narrow specificity for NTP analogues, the DNA-dependent NTPase activity associated with the herpes primase-helicase complex exhibited very little specificity with respect to NTPs containing unnatural bases. The implications of these results with respect to the mechanism of the helicase-primase and current fidelity models are discussed.