Temporal variability in California grasslands: soil type and species functional traits mediate response to precipitation. Journal Article uri icon

Overview

abstract

  • Plant communities on infertile soils may be relatively resistant to climatic variation if species in these communities have "stress-tolerant" functional traits that limit their ability to respond to climate. Alternatively, such communities may be more sensitive to climatic variation if their relatively sparse vegetative cover exposes species to more extreme changes in factors such as temperature or wind. We compared temporal variability in species richness and composition over 10 years between grasslands on infertile serpentine and "normal" sedimentary soils. Variability in species richness and species composition tracked mean annual precipitation on both soils, but variability was lower in serpentine grasslands. Communities on serpentine had lower functional diversity and had species with more "stress-tolerant" traits than non-serpentine communities (i.e., shorter stature, lower specific leaf area, and lower leaf area). Within and between soils, variability in species richness and temporal turnover were lower in communities scoring as more stress tolerant on a multivariate index of these traits; however, community variability was unrelated to functional diversity. Within 41 species found commonly on both soils, variability in occurrence and cover were also lower on serpentine soils, even though intraspecific trait differences between soils were minimal; this suggests a direct effect of soil type on species variability in addition to the indirect, trait-mediated effect. Communities with higher biomass had higher annual variability in species occurrence and cover. Our results suggest that infertile soils reduce compositional variability indirectly by selecting for stress-tolerant traits and directly by limiting productivity. We conclude that communities on infertile soils may respond more conservatively to predicted changes in precipitation, including increased variability, than communities on soils of normal fertility.

publication date

  • September 1, 2012

has subject area

has restriction

  • closed

Date in CU Experts

  • November 3, 2015 3:30 AM

Full Author List

  • Fernandez-Going BM; Anacker BL; Harrison SP

author count

  • 3

Other Profiles

International Standard Serial Number (ISSN)

  • 0012-9658

Additional Document Info

start page

  • 2104

end page

  • 2114

volume

  • 93

issue

  • 9