abstract
- The use of ultra-broadband supercontinuum generated by an all-fiber system to characterize high-index contrast photonic circuits over the wavelength range 1.2 - 2.0 microm is demonstrated. Efficient, broadband waveguide coupling techniques and sensitive normalized detection enable rapid and high-resolution measurements of nano-scale one-dimensional photonic crystal microcavities. Experimental mappings of bandgaps and cavity mode resonances with a wavelength resolution of 0.1 nm compare well with computer simulations.