Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible‐shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover Journal Article uri icon

Overview

abstract

  • AbstractDuring its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single‐scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X‐ray diffraction‐measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian‐transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances (~20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well‐sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

publication date

  • December 1, 2017

Date in CU Experts

  • January 31, 2026 8:55 AM

Full Author List

  • Lapotre MGA; Ehlmann BL; Minson SE; Arvidson RE; Ayoub F; Fraeman AA; Ewing RC; Bridges NT

author count

  • 8

Other Profiles

International Standard Serial Number (ISSN)

  • 2169-9097

Electronic International Standard Serial Number (EISSN)

  • 2169-9100

Additional Document Info

start page

  • 2489

end page

  • 2509

volume

  • 122

issue

  • 12