Contributions of intracellular compartments to calcium dynamics: implicating an acidic store. Journal Article uri icon

Overview

abstract

  • Many cells show a plateau of elevated cytosolic Ca(2+) after a long depolarization, suggesting delayed Ca(2+) release from intracellular compartments such as mitochondria and endoplasmic reticulum (ER). Mouse pancreatic beta-cellsshow a thapsigargin-sensitive plateau (’hump’) of Ca(2+) after a 30 s depolarization but not after a 10 s depolarization. Surprisingly, this hump depends primarily on compartments other than the mitochondria or ER. It is reduced by only 22% upon blocking mitochondrial Na(+)-Ca(2+) exchange and by only 18% upon blocking ryanodine or IP(3) receptors together. Further, the time course of ER Ca(2+) measured by a targeted cameleon does not depend on the duration of depolarizations. Instead, the hump is reduced 35% by treatments with the dipeptide glycylphenylalanine beta-napthylamide, a tool often used to lyse lysosomes. We show that this dipeptide does not disturb ER functions, but it lyses acidic compartments and releases Ca(2+) into the cytosol. Moreover, it induces leaks in and possibly lyses insulin granules and stops mobilization of secretory granules to the readily releasable pool in beta-cells. We conclude that the dipeptide compromises dense-core secretory granules and that these granules comprise an acidic calcium store in beta-cells whose loading and/or release is sensitive to thapsigargin and which releases Ca(2+) after cytosolic Ca(2+) elevation.

publication date

  • January 1, 2006

Date in CU Experts

  • October 1, 2013 11:34 AM

Full Author List

  • Duman JG; Chen L; Palmer AE; Hille B

author count

  • 4

Additional Document Info

start page

  • 859-72

end page

  • 859-72

volume

  • 7

number

  • 7