On the Relationships between Subtropical Clouds and Meteorology in Observations and CMIP3 and CMIP5 Models Journal Article uri icon

Overview

abstract

  • AbstractClimate models’ simulation of clouds over the eastern subtropical oceans contributes to large uncertainties in projected cloud feedback to global warming. Here, interannual relationships of cloud radiative effect and cloud fraction to meteorological variables are examined in observations and in models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively). In observations, cooler sea surface temperature, a stronger estimated temperature inversion, and colder horizontal surface temperature advection are each associated with larger low-level cloud fraction and increased reflected shortwave radiation. A moister free troposphere and weaker subsidence are each associated with larger mid- and high-level cloud fraction and offsetting components of shortwave and longwave cloud radiative effect. It is found that a larger percentage of CMIP5 than CMIP3 models simulate the wrong sign or magnitude of the relationship of shortwave cloud radiative effect to sea surface temperature and estimated inversion strength. Furthermore, most models fail to produce the sign of the relationship between shortwave cloud radiative effect and temperature advection. These deficiencies are mostly, but not exclusively, attributable to errors in the relationship between low-level cloud fraction and meteorology. Poor model performance also arises due to errors in the response of mid- and high-level cloud fraction to variations in meteorology. Models exhibiting relationships closest to observations tend to project less solar reflection by clouds in the late twenty-first century and have higher climate sensitivities than poorer-performing models. Nevertheless, the intermodel spread of climate sensitivity is large even among these realistic models.

publication date

  • April 15, 2015

has restriction

  • closed

Date in CU Experts

  • May 27, 2022 10:11 AM

Full Author List

  • Myers TA; Norris JR

author count

  • 2

Other Profiles

International Standard Serial Number (ISSN)

  • 0894-8755

Electronic International Standard Serial Number (EISSN)

  • 1520-0442

Additional Document Info

start page

  • 2945

end page

  • 2967

volume

  • 28

issue

  • 8