Interannual hydrographic variability beneath Thwaites Eastern Ice Shelf, West Antarctica Journal Article uri icon

Overview

abstract

  • <p>Basal melting of the Amundsen Sea ice shelves is caused by relatively warm waters accessing the ice base through turbulent processes at the ice-ocean boundary layer. Here we report hydrographic variability in Thwaites Eastern Ice Shelf (TEIS) from January 2020 to March 2021 using novel subglacial mooring measurements and ocean modelling. The layers ~100 m beneath the ice base warmed considerably (~1˚C) in this period. The meltwater fraction doubled associated with basal melting due to the higher heat, leading to a freshening in the upper layers. The lighter layer contributed to the acceleration of the under-ice circulation, which led to higher basal melting through intensified temperature flux, creating positive feedback beneath the ice. The interannual variability of the water masses in the TEIS cavity is linked to the seasonal strengthening and weakening of the Pine Island Bay gyre. During periods that the sea-ice covers the bay, such as winter 2020 and the 2020-2021 summer season, the momentum transfer from the wind to the ocean surface is less effective and the gyre weakens. The deceleration of the gyre leads to relaxation and shoaling of the isopycnals beneath the TEIS, which brings warmer water upwards closer to the ice base. The results discussed in this work shows that the fate of the Amundsen Sea ice sheet is tightly controlled by adjacent small-scale gyres, which could prolongate warming periods beneath ice shelf cavities and lead to high basal melting rates.</p>

publication date

  • March 26, 2022

has restriction

  • closed

Date in CU Experts

  • April 12, 2022 9:09 AM

Full Author List

  • Dotto T; Heywood K; Hall R; Scambos T; Zheng Y; Nakayama Y; Snow T; Wåhlin A; Wild C; Truffer M

author count

  • 12

Other Profiles