Multiscale Convective Wave Disturbances in the Tropics: Insights from a Two-Dimensional Cloud-Resolving Model Journal Article uri icon

Overview

abstract

  • Abstract; Multiscale convective wave disturbances with structures broadly resembling observed tropical waves are found to emerge spontaneously in a nonrotating, two-dimensional cloud model forced by uniform cooling. To articulate the dynamics of these waves, model outputs are objectively analyzed in a discrete truncated space consisting of three cloud types (shallow convective, deep convective, and stratiform) and three dynamical vertical wavelength bands. Model experiments confirm that diabatic processes in deep convective and stratiform regions are essential to the formation of multiscale convective wave patterns. Specifically, upper-level heating (together with low-level cooling) serves to preferentially excite discrete horizontally propagating wave packets with roughly a full-wavelength structure in troposphere and “dry” phase speeds cn in the range 16–18 m s−1. These wave packets enhance the triggering of new deep convective cloud systems, via low-level destabilization. The new convection in turn causes additional heating over cooling, through delayed development of high-based deep convective cells with persistent stratiform anvils. This delayed forcing leads to an intensification and then widening of the low-level cold phases of wave packets as they move through convecting regions. Additional widening occurs when slower-moving (∼8 m s−1) “gust front” wave packets excited by cooling just above the boundary layer trigger additional deep convection in the vicinity of earlier convection. Shallow convection, meanwhile, provides positive forcing that reduces convective wave speeds and destroys relatively small-amplitude-sized waves. Experiments with prescribed modal wind damping establish the critical role of short vertical wavelengths in setting the equivalent depth of the waves. However, damping of deep vertical wavelengths prevents the clustering of mesoscale convective wave disturbances into larger-scale envelopes, so these circulations are important as well.

publication date

  • January 1, 2008

Date in CU Experts

  • June 24, 2021 4:37 AM

Full Author List

  • Tulich SN; Mapes BE

author count

  • 2

Other Profiles

International Standard Serial Number (ISSN)

  • 0022-4928

Electronic International Standard Serial Number (EISSN)

  • 1520-0469

Additional Document Info

start page

  • 140

end page

  • 155

volume

  • 65

issue

  • 1