Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics Journal Article uri icon

Overview

abstract

  • Abstract. The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing: (1) a set of tools and existing grid structures – including both regular and irregular grids – to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications, but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.;

publication date

  • September 14, 2016

has restriction

  • green

Date in CU Experts

  • November 10, 2020 4:14 AM

Full Author List

  • Hobley DEJ; Adams JM; Nudurupati SS; Hutton EWH; Gasparini NM; Istanbulluoglu E; Tucker GE

author count

  • 7

Other Profiles