Improved Methodologies for Continuous Flow Analysis of Stable; Water Isotopes in Ice Cores Journal Article uri icon

Overview

abstract

  • Abstract. Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometers (LAS) perform as well or better than IRMS. The new LAS technology has been combined with continuous flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system uncertainty and system mixing length into liquid and vapor components – useful measures for defining and improving the overall performance of the system. Critically, our methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. We also explain a method for introducing consecutive sections of isotopically distinct ice at the melt head to define the system-wide mixing length. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the WAIS Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ~ 1 m × 1.3 cm2 ice sticks to a temperature controlled melt head, where the ice is converted to a continuous liquid stream, and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the VSMOW-SLAP scale and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on our system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.;

publication date

  • July 26, 2016

has restriction

  • green

Date in CU Experts

  • November 7, 2020 9:00 AM

Full Author List

  • Jones TR; White JWC; Steig EJ; Vaughn BH; Morris V; Gkinis V; Markle BR; Schoenemann SW

author count

  • 8

Other Profiles