Transcription factor enrichment analysis (TFEA): Quantifying the activity of hundreds of transcription factors from a single experiment Journal Article uri icon



  • 1AbstractDetecting differential activation of transcription factors (TFs) in response to perturbation provides insight into cellular processes. Transcription Factor Enrichment Analysis (TFEA) is a robust and reliable computational method that detects differential activity of hundreds of TFs given any set of perturbation data. TFEA draws inspiration from GSEA and detects positional motif enrichment within a list of ranked regions of interest (ROIs). As ROIs are typically inferred from the data, we also introduce muMerge, a statistically principled method of generating a consensus list of ROIs from multiple replicates and conditions. TFEA is broadly applicable to data that informs on transcriptional regulation including nascent (eg. PRO-Seq), CAGE, ChIP-Seq, and accessibility (e.g. ATAC-Seq). TFEA not only identifies the key regulators responding to a perturbation, but also temporally unravels regulatory networks with time series data. Consequently, TFEA serves as a hypothesis-generating tool that provides an easy, rigorous, and cost-effective means to broadly assess TF activity yielding new biological insights.

publication date

  • January 25, 2020

has restriction

  • green

Date in CU Experts

  • November 4, 2020 1:06 AM

Full Author List

  • Rubin JD; Stanley JT; Sigauke RF; Levandowski CB; Maas ZL; Westfall J; Taatjes DJ; Dowell RD

author count

  • 8

Other Profiles