Recent evidence suggests that some brain areas act as hubs interconnecting distinct, functionally specialized systems. These nexuses are intriguing because of their potential role in integration and also because they may augment metabolic cascades relevant to brain disease. To identify regions of high connectivity in the human cerebral cortex, we applied a computationally efficient approach to map the degree of intrinsic functional connectivity across the brain. Analysis of two separate functional magnetic resonance imaging datasets (each n = 24) demonstrated hubs throughout heteromodal areas of association cortex. Prominent hubs were located within posterior cingulate, lateral temporal, lateral parietal, and medial/lateral prefrontal cortices. Network analysis revealed that many, but not all, hubs were located within regions previously implicated as components of the default network. A third dataset (n = 12) demonstrated that the locations of hubs were present across passive and active task states, suggesting that they reflect a stable property of cortical network architecture. To obtain an accurate reference map, data were combined across 127 participants to yield a consensus estimate of cortical hubs. Using this consensus estimate, we explored whether the topography of hubs could explain the pattern of vulnerability in Alzheimer's disease (AD) because some models suggest that regions of high activity and metabolism accelerate pathology. Positron emission tomography amyloid imaging in AD (n = 10) compared with older controls (n = 29) showed high amyloid-beta deposition in the locations of cortical hubs consistent with the possibility that hubs, while acting as critical way stations for information processing, may also augment the underlying pathological cascade in AD.